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Abstract—Wireless sensor networks (WSNs) are being sug-
gested at an increasing rate for structural health monitoring
(SHM). The objective is to monitor complex events (e.g., damage)
in structures (e.g., an industrial machine, a high-rise building)
that is usually carried out with wired-based SHM systems.
However, monitoring events with a WSN deployed over large
structures is challenging due to WSN constraints (high-resolution
data transmission, energy) and the quality of monitoring. In this
paper, we attempt to design a cyber-physical system (CPS) of
structural event monitoring with WSNs, and propose a novel
model-based in-network decision making in the CPS, named
MODEM. We think of the idea of generic event detection (like
target/object) schemes and enable each sensor to sense and make
a simplified local decision (0/1) on the complex events. We then
think of the formation of engineering structures, and find that
a large physical structure consists of a number of substructures.
We enable deployed sensors to be organized into groups in such
a way that a group-wise final decision (e.g., 0/1) can be provided
for each substructure independently so that the existence of an
event (if there is any) in a specific substructure can be identified
by WSNs. MODEM is fully distributed in nature, and promises
to have the monitoring quality be similar to the original wired-
based schemes, and consumes much less energy for transmissions
and computations than existing schemes do. The effectiveness of
MODEM is shown via both simulations and real experiments.

Index Terms—Wireless sensor networks; in-network process-
ing; decision making; sensor fusion; structural health monitoring.

I. INTRODUCTION

Structural health monitoring (SHM) has received increased
attention from diverse domains, including civil, structural,
mechanical, and aeronautical (CSMA) engineering, industrial
communities, and computer science [1]–[7]. The objective
of SHM is to monitor complex events (e.g., damage, crack,
corrosion) in a physical structural system (e.g., an industrial
machine, a nuclear power plant, a high-rise building, a bridge)
by analyzing the dynamics in elements/components of them.

Wired network systems have been dominating SHM tasks
since late 1980s, as they are assumed to be reliable. Sub-
stantial work has been done by the engineering domains
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that are generally centralized/global-based [8], [9]. However,
manipulating a large structure with wire is cumbersome. Also,
we find that these schemes do not seriously handle data
collection quality, synchronization errors, etc. In turn, both
CSMA and computer science (CS) communities have started
research toward developing wireless sensor networks (WSNs)
as alternatives to wired systems since 2000s. In 2010s, using
WSNs for SHM has received attention at an increasing rate.
Reasons include advantages such as low-cost, flexibility, and
autonomous decision-making capabilities.

Both CSMA and CS communities have handled numerous
challenges/requirements in substantial existing work [2], [4],
[5], [10], [11], including sensor deployment, data acquisition,
compression, aggregation, and complex-damage detection.
However, there is still a lack of quality of monitoring in the
work. For example, two data collection methods are given for
WSNs, namely, short-range (hop-by-hop routing) and long-
range (single-hop) transmission. When given a large scale
structure for monitoring, e.g., the Guangzhou New TV Tower
(GNTVT) [12], [13] that peaks at 600m above ground or a
bridge/tunnel that is longer than several kilometers, even given
only a substructure (e.g., a part of the structures), manipulating
such systems is cumbersome.

More particularly, based on our experiences with our civil
engineering collaborators, we find that these WSN schemes
instrument centralized SHM algorithms to obtain the structural
raw response data (i.e., vibration, strain) at a high frequency
(e.g., 560 Hz or more) for a ‘long enough’ period of time.
We also find that some popular existing SHM algorithms,
e.g., the ERA, NExT, FFT (see Table I for abbreviations) are
made distributed through the idea of ‘divide and conquer,’
multi-level damage localization, and so on [1], [3], [14]–[18].
These algorithms normally work in a round-by-round manner.
Each sensor shares the response data with multiple sensors,
and then transmits to the BS. The data from each sensor
involved is no longer a single value, but a sequence of data
having, generally, over thousands of data points at each of the
rounds [10]. Although those SHM algorithms solve practical
engineering problems, applying them directly within a WSN
is quite difficult.

Regarding the situation above, the whole data cannot be
either stored or transferred, but must be mined/processed
immediately. Some closely related work include different
types of in-network processing techniques in WSNs such
as data compression, hop-by-hop aggregation [1], [3], [10],
[10], [18]. However, they still require complicated signal
processing techniques such as matrix computation and system
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identification. Moreover, the ability/quality of event detection
(AoED) with them in WSNs is not addressed. We discover
that our civil collaborators prefer to use WSN nodes simply
as ‘data collectors’, despite their potential for an autonomous
event detection (e.g., 0/1 simplified decision for the complex
event, similar to the target/object detection). An autonomous
decision-making scheme with the high energy-efficiency and
AOED can be promising.

In this paper, we attempt to design a cyber-physical system
(CPS) of structural event monitoring with WSNs, and propose
a novel model-based in-network decision making in the CPS,
named MODEM. As hinted by the recent work [2], [15], we
consider that MODEM is a typical example of a CPS, where
the performance analysis is carried out under the integration
between the CS’s cyber system (computation, communication,
control in WSNs) and dynamics of physical systems; other-
wise, the CPS may provide a suboptimal solution.

In our solution, we use the idea of generic event detection
(like target/object) schemes and enable each sensor to sense
and work as a local decision maker (LDM) that makes a
simplified local decision (0/1) on the complex events. We
then think of the formation of engineering structures, and
find that a large physical structure consists of a number of
substructures. We enable deployed sensors to be organized into
groups in such a way that each group of LDMs can cover a
substructure independently. A group-wise final decision (e.g.,
0/1) is made at a decentralized decision maker (DDM) sensor
by simply fusing all decisions from the group of LDMs so
that the existence of an event (‘1’ if there is any) in a specific
substructure can be identified by WSNs.

The crucial aspect is that the final decision ‘0’ (zero) made
by a DDM is only transmitted to the BS if there is ‘no event’.
As a result, the total energy and bandwidth cost required for
wireless data transmission is drastically reduced. MODEM is
fully distributed in nature, and promises to have the monitoring
quality similar to the original wired-based schemes. It makes
sensing and 0/1 decisions with a equation-based CPS model
that has the integration of computation in the WSN and
dynamics in the physical process.

In summary, the contributions of this paper are four-fold.
• We formally define the problem of MODEM, which

to our knowledge is the first that provides simplified
decisions in such a CPS. This task is by no means easy, as
it involves knowledge from CSMA engineering domains,
process monitoring, and methods from computer science.

• We show a model-based decision-making in the CPS and
embed a decision-making algorithm into the on-board
computational core of each sensor (such as Imote2).

• To achieve a decision on an event at a substructure in a
fully-distributed manner, we propose a low overhead sen-
sor grouping and a group-wise decision fusion technique.

• We conduct an extensive evaluation of MODEM in sim-
ulations using real data traces collected by a wired SHM
system [12]. We implement a proof-of-concept system
using Imote2 sensors running TinyOS, and deploy it on a
lab-based structure to validate the decision-making under
the event of physical damage. MODEM has the AoED
similar to the original wired-based schemes, and achieves

Table I
ABBREVIATION DESCRIPTION

Abbreviation Full Name
ARX Auto-regressive model with exogenous inputs [21]
NExT Natural Excitation Technique [16], [18]
ERA Eigen Realization Algorithm [1], [16]–[18]
FFT Fast Fourier Transformation [15], [16]
T A whole period of SHM operation (i.e., a system run)
Td, d ∈ [1, ρ] dth period of monitoring in T
τ A discrete period (i.e., a round ) of monitoring in Td

low energy cost (at least eight times lower than existing
WSN-based schemes under ‘no event’, and three times
lower than under the ‘event’).

The rest of this paper is organized as follows. Section
II reviews related work. The MODEM overview and design
are in Sections III and IV, respectively. Sections V and VI
present the decision making in CPS and decision-making
algorithm. Section VII provides substructure-oriented group-
wise decision making. Performance evaluations are conducted
in Section VIII. Section IX concludes this paper.

II. RELATED WORK

Monitoring or diagnosing the health of industrial ma-
chines/equipments and civil structures using WSNs have re-
cently become an active area of research [1], [3], [6], [14],
[19], [20]. In the SHM system implemented on the GNTVT
[12], the WSN is partially adopted [13]. Existing work mainly
focuses on data acquisition and compression methods, reliable
data transport protocols, damage detection, and so on [3].

There are various clustering algorithms proposed for WSN-
based SHM [2], [3], [17], [18]. Among them, the most
interesting one uses distributed processing and cluster-based
structural modal analysis. An SHM scheme, SPEM, is verified
in an optimal sensor placement algorithm [13]. Indeed, nu-
merous SHM systems have been proposed by the engineering
domains, which leverage WSNs to collect raw data. They
are generally designed to support centralized/global decision-
making in SHM without special consideration to the WSN
resource and ability of monitoring.

Challenges like the quality/ability of monitoring (AoED)
and long-term monitoring still need to be resolved for WSNs
to be widely adopted. For example, a state-of-the-art WSN
deployed at the Golden Gate Bridge (GGB) [22] required 9
hours to collect a single round of data that affects the AoED.
This large latency may arise from the fact that underlying
physical system aspects were designed separately from cyber
WSN aspects. Later, DLAC [15] presents a CPS design of
SHM with a WSN and a design of a damage localization that
effectively reduces the amount of data transmission.

MODEM takes inspiration from the above prominent
schemes, and addresses some important issues or gaps.

i) Data transmission considering the ‘event’/‘no event’
situation. Typically, the common situation in SHM is that
a structural event is a relatively rare event. We thus argue that
it is not necessary to always broadcast a huge amount of data
over the WSN; after all, the sensors may only need to transmit
local decisions to their neighbors or the upstream sensors.

ii) Complexity of data sensing/decision making. The popular
methods used in wired-based SHM, such as NExT, ERA, FFT,
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Figure 1. The work flow of MODEM for structural health monitoring.

and genetic algorithms take the heaviest computation to extract
structural properties, and take much time to make a decision
and forward it to the BS [1], [3], [15]–[18]. By applying them
directly in WSNs, the network may suffer from the need for
significant energy for communication (with a high message
exchange rate) and for decision making.

iii) Local and long-term SHM. SHM is still assumed to
be a global scheme. What we can do to find a local SHM
is to consider the exact formation of civil structures (i.e.,
substructural orientation). When damage occurs at a partic-
ular location, the corresponding substructure is given higher
priority by allocating more time to the sensors.

MODEM handles issues above by an in-network decision
making and distributed monitoring in order to reach an optimal
CPS solution of WSN-based SHM.

III. OVERVIEW OF EVENT MONITORING IN MODEM

Fig. 1 illustrates a snapshot of the processes involved in
the MODEM. After deployment of a WSN (Step 1), the
sensors are organized into groups and become ready for the
event monitoring operation. Sensors are allowed to sense and
get vibration data (Step 3). Amongst all the labeled steps
in Fig. 1, the most important contribution of this work is
Step 4, in that each LDM uses an embedded algorithm of
model-based decision-making. After processing data about
structural characteristics, an LDM decides if there is an event
by comparing the residuals achieved by a given structural
model and a predicted model. Once the WSN starts for T ,
Steps 4 to 6 repeat in each Td until T finishes. The in-network
decision on the event (1/0) is fused at DDMs in each Td for a
confirmation. If there is a ‘1’ decision (Step 7), meaning that
an event happened at a substructure, the DDM located on the
particular substructure forwards the decision to the BS. It can
then issue a message to all its LDMs for transmitting all of
the mode shapes at the request of the BS. Otherwise, DDMs
may transmit group information (e.g., connectivity, faults).

IV. MODEM DESIGN: DECISION-MAKING IN A CPS

In this section, we design the MODEM. It includes a CPS
model and system models. Finally, we figure out the problem.
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Figure 2. Modeling a cyber-physical system.

A. CPS Model
A major feature of a CPS is the tight combination and

coordination of the computational resources and the physical
elements. Our CPS model is presented in Fig. 2. There are
four parts in the model. (1) The underlying physical structural
system consists of the ‘physical elements’, which are governed
by laws in physics as specified by nature, forced excitation, or
damage occurrence. (2) There are many computing platforms
(sensors), which are capable of sensing, as well as controlling
its sensing, transmission, and monitoring tasks. (3) There is the
equation given to the sensors that is used to collect structural
element state information. The sensors are connected by a
communication network (via wireless links). The sensors and
the network form the ‘cyber’ part of CPS, which has to be
designed carefully, such that the integrated system achieves
certain functionalities. (4) The sensors are given a computation
model to make a decision on the structural event.

B. Communication Network Model1

Consider a physical structure, such as GNTVT [12], [13] for
monitoring, and the WSN topology, as depicted in Fig. 3. The
structure consists of a number of substructures as shown in
Fig. 3c, represented by Ωq , where q is the maximum number
of substructures. Given a set P of S homogeneous sensors
with limited energy, we need to form such a WSN denoted
by W = (V,E) over the structure. S sensors are attached to
the structure by some location assignment L = l1, l2, . . . , lS ,
where sensor su is placed at location lu. We adopt an SHM-
specific sensor placement model to form the WSN [19], by
which we can have sensor nodes like the LDM and DDM
deployed. (more detail can be found in Appendix B).

With the placement model, we consider a link quality model
regarding dynamic structural environments and interference.
According to this model, the strength of a radio signal decays
with some power of distance. We let Rmin and Rmax denote
the communication range for connected region and transitional
region, respectively. We take Rmin as the range that a sensor
can easily communicate with 100% packet transmission rate
(PRR). We calculate Rmax based on a statistical link quality
on a initial sensor deployment. If a sensor experiences that its
Rmax is more than a threshold value,

1Extended details of some parts (models, results, etc.) of the paper can be
found in appendices of an online supplemental file.
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After the deployment of all sensors, they are organized into
(possibly overlapping) gi(i = 1, 2, . . . ,K) groups. Each group
contains a subset of sm sensors around a substructure for
monitoring. gi is variable, which relies on the WSN density
and diameter of a substructure. We assume that the number of
groups is great or equivalent to the number of substructures,
say, q ≥ K. In the WSN, each sensor senses periodically to
get response measurements (i.e., excitation caused by harmful
vibration, heavy wind, load, etc.). Each sensor in a group
works as an LDM. After the first election, one of the LDMs
in the group is elected as a DDM before Td finishes. An LDM
can adjust its Rmin according to the connected region based
on diameter d, as shown in Fig. 3d. At Rmax, a DDM can
connect to its neighbor DDMs or the BS.

C. Embedded Decision Making
Supposed that each LDM is given a embedded decision-

making algorithm, including a computation model. After mea-
surement, each LDM can process and make a decision on an
event detected locally and independently (without exchanging
messages with its neighbors).

Generally, data fusion is an effective signal processing
technique, which is often used for generic WSN applications
[23], and can also be used to improve the performance of
SHM applications. However, our aim is mainly to focus on
embedded decision-making rather than decision fusion. Each
LDM makes the following decision (Dj) independently:

Dj =

{
0 if there is no event of damage
1 if there is an event of damage

(1)

The objective of localized detection is to minimize the follow-
ing energy cost edm by the system, due to decision-making:

edm = eelec[Dj ], where Dj ∈ {0, 1}, (2)
where eelec is the energy required for the computation in
order to decide on Dj , which includes a computation model
and related equation for capturing structural health proprieties.
This is embedded to the sensor. Having Dj reliably at a
sensor is subject to a false positive decision. Because the noise
from the sensor device is different from the real vibration
threshold for a structural event with a high noise level from the
measurement, a CPS system is likely to give a false decision
when there is no real structural event. In our case, we define
the false alarm rate when there is actually no structural event,
but the system detect event.

D. Energy Cost Model
One of the major objectives is to minimize the energy cost

of the WSN. We consider an existing energy model, suggested
for clustering in a WSN-based SHM systems [17]. Regarding
the model [17], we briefly describe here how energy consumed
in transmitting/receiving a packet is computed in our case. Let
cost(su) be the total energy cost of a sensor in ith group gi
and cost(gi) be the energy cost of the group of sensors, which
is given as follows:

cost(gi) =
n∑

u=1

cost(su) (3)

where cost(su) = Ers(su) + Erc(su) + edm.

(a) (b)
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Figure 3. A WSN-based structural health monitoring framework: (a) GNTVT
structure; (b) finite element model (FEM) [13] of GNTVT; (c) breaking the
GNTVT structure into substructures; (d) sensor grouping.

We describe the terms as follows. i) Ers(su) is the energy
required by sensing for N data points; in taking vibration
signal measurements, assuming that there is a maximum 40%
overlap, N = (na/2+1/2)·cr, where na and cr are the number
of averages, mainly for denoising purposes. These basically
vary from 10 to 20, and are cross-correlational factors [17].
na, cr, and N are set by fixed values on a sensor. ii) Erc(su)
is the energy cost per bit for transmission over a link between
a transmitter and a receiver, which includes the energy cost for
sending and receiving data, and grouping and inter-grouping
communication tasks. iii) edm is given by (2).

E. The Problem in MODEM
Given a set P of S LDMs with limited energy and a

BS placed at locations over a physical structure, we find a
decision-making algorithm and a substructure-oriented group-
wise decision such that ith group gi of LDMs makes decisions
on an event, and a suitable DDM fuses all decisions and makes
a confirmed decision in gi and report to the BS. The objectives

are to minimize the total energy cost costT =
K∑
i=1

cost(gi) and

ensure the ability/quality of event detection (AoED).

V. MODEL-BASED DEVELOPMENT FOR
DECISION-MAKING IN CPS

A. Event Detection Model from CSMA Engineering Domains
Looking into traditional damage detection models, there

are many models available, such as NExt, ERA, SVD, and
FFT-based. We adopt the most widely-accepted equation-based
model, ARX2 [21], as shown in Fig. 2. The estimation of the
ARX model is the most efficient of the polynomial estimation
methods, which is defined as follows:

O(t) +
Na∑

k=1

akO(t− k) =
Nb∑

k=1

bkI(t− nk − k + 1) + σ. (4)

In (4), O(t) and I(t) are the time-series output and the input
response data measurements of physical system at sample
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index t, respectively; assume that I(t) is an unknown input
(caused by an external ambient or forced excitation). ak and
bk are the coefficients on previous measurements. Na and Nb

are the orders of the ARX model. nk is the number of input
samples and σ is the residual.

Modified ARX model for WSNs. Like many other models
from CSMA engineering, the ARX equation model cannot be
applied directly to a WSN. In a wired system, the final results
through the ARX equation are computed globally (see Figs. 4a
and 2) at the BS, which have no energy limitations. Even the
BS needs significant time to finish a round of computations.
The BS also delays for all raw measured data from sensors
and needs further offline computation.

Model-based system fault detection in the process-
monitoring domain has also been used as a broad and dynamic
field for over thirty years [24]. We found that when using a
model for a higher level of abstraction, the problems of fault
detection and structural damage detection using ARX require
similar solutions [17]. We modify the ARX equation model
with the model in process-monitoring and propose MODEM,
which has the following advantages:

i) The combined model is linear, and there is no need to
deal with solving nonlinear equations or to wait for a whole
given period of measurement.

ii) The model uses polynomials of reasonable order, and
there is no need to deal with big size matrices like NExt,
ERA. All computations can be done in the time domain.

iii) Dj is taken instead of the mode shape (i.e., a number
of vibration patterns at specific frequencies in a structure [13],
[16]). However, we ensure that the mode shape can also be
computed in MODEM by adjusting the residual, if one wishes.

iv) The confirmation of decisions provide substructural
event statuses, which have no need for centralized interaction.
B. Single-Input Multi-Outputs in MODEM

We assume that, manually, an SHM system end user has
no access to input data about a physical structural system to
create a model for it. The WSN acquires measurements as the
structural system’s input. To solve this problem, we combine

2http://en.wikipedia.org/wiki/Autoregressive moving average model

two techniques as follows: First, when a sensor acquires
measurements of the structural system, we narrow the set of
possible inputs. The common input used to perform event de-
tection is a step forward, as it is easily repeatable and creatable.
This means that we have two sets of measurements: one used
as input and the other as output, so that the knowledge of
the actual input of the whole system is not always needed.
Second, instead of considering the actual inputs for a Td like
the ARX model, we consider part of the measured outputs
as inputs. This approach is derived from the representation
of single-input multi-outputs (SIMO) systems using transfer
function matrices (M ) and a diagonal matrix (H).

Considering each LDM in a group (gi), the substructural
monitoring is shown in Fig. 4b, while Fig. 4a shows the
traditional global SHM system where the network monitors
the structure as a whole. Fig. 4c illustrates the broader view of
the model-based technique at each LDM, in which the actual
system output is the result of a predicted system plus damage
effects and uncertainty [24].

C. Analytical Damage Event Detection Process
In this subsection, we show analytically the damage event

detection process, using the use of two outputs system. Let I
be the single input of the system (by following (4)), and let O1

and O2 be the multiple outputs, such that O = [O1 O2]. The
transfer function is given as M = [M1 M2]. Now, a relation
between the output and transfer functions is as: O = M · I ,
where O,M ∈ ℜ2×1.

An equivalent input-output model is given with matrices M
and H , consisting of elements that are polynomials in the shift
operator; H is a diagonal matrix. In the case, where M−1

1

exists, the output obtained by the sensor measurement can
be given as follows: O2 = M2 · M−1

1 · O1, i.e.,O2 = H21 ·
O1with H21 = M2 ·M−1

1 . But, it can be generalized to n out-
puts’ system by simply splitting n outputs into two sets: E1 =
[O1 O2 ... Oz] and E2 = [Oz+1 Oz+2 ... On].

When we use a model of the undamaged structural system
denoted by M̂ , there are some modeling errors based on the
sensor measurements in practice, which are given as M̂ ≈ M ,
i.e., M = M̂ + ∆M , where ∆M = [∆M1 ∆M2]. Then,
under the undamaged system condition, the following relation
is satisfied: Ô = M̂ · I ≈ O. We can define an estimation of
the output O2 using the model and its relation with O1:

Ô2 = M̂2 · M̂−1
1 ·O1. (5)

According to this relation, if there is a damage event D in
the structural system, its behavior will change. The event in the
structure is equivalent to a change in the system’s parameter,
i.e, in M . For a damage event case, the system behavior could
be as follows: O = (M +D) · I; where a damage event D =
[D1 D2]. If D = 0, there is no damage event in the structural
system. As a consequence, in a case, where (M1 +D1)−1

exists, O2 = (M2+D2)·(M1 +D1)−1 ·O1. Now we calculate
the residual, which gives the change in the behavior of the
system. The residual denoted by r is as follows:

r = (O2 − Ô2) (6)
If there is a damage event D at the early stage, M−1

1 ·D1 ≪
1 is true. Then, the residual becomes as follows:
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r ≈
(
(M2 +D2) ·M−1

1 ·
(
1−M−1

1 ·D1

)
− M̂2 · M̂−1

1

)
·O1

≈
(
M2 ·M−1

1 − M̂2 · M̂−1
1

)

︸ ︷︷ ︸
→0

(Corresponding to modeling errors)

.O1+

(
D2 ·M−1

1 ·
(
1−M−1

1 ·D1

)
−M2 ·M−2

1 ·D1

)
︸ ︷︷ ︸

(Corresponding to damage sensitivity)

·O1

(7)
The residual in (7) is partly subject to modeling errors (left

part), which is caused by low sensor location quality and
dynamic structural response. If there is a damage event in
the structure, the change can be appeared in the right part. We
assume that M1 ≈ M̂1 and M2 ≈ M̂2, that is ∆M1 → 0 and
∆M2 → 0, which is practical, as it is possible to adapt the
model to make it fit the real data measurement.

VI. EMBEDDED DECISION MAKING ALGORITHM

A. Algorithm Embedded to Each Sensor
In light of the above analytical detection process, and

considering WSN architecture requirements, the model-based
technique is designed to utilize the on-board capabilities of a
sensor, e.g., the Imote2. Here, we describe the decision making
procedures at each LDM. As shown in Fig. 4c, the monitoring
of the structure can be broken down into two steps. First, as
the residual, r is generated, which estimates how far the actual
behavior is from the expected one. Second, Dj must be taken
regarding the structural health status via r.

The analytical model connects the first set of measurements
O1 to the second set O2 at sample index t so that the frequency
domain is given as follows:

Ô2(t) = Ĥ21(t) ·O1(t) =

Na∑
k=0

ak·t−k

1+
Nb∑
k=1

bk·t−k

·O1(t) (8)

Taking into consideration the resource constraints in a
wireless sensor, computations of the model will be done in
the time domain. Thus, difference equations will be used to
model the structure’s behavior as follows:

Ô2(n) =
Na∑

k=0

ak ·O1(n− k)−
Nb∑

k=1

bk · Ô2(n− k),∀n > Nb

(9)
With the initialization Ô2(n) = O2(n), ∀n > Nb.

This model leads to the following residual signal denoted
by r(n), which has been analytically defined by (4):

r(n) = O2(n)− Ô2(n)

= O2(n)−
(

Na∑
k=0

ak ·O1(n− k)

)
−
(

Nb∑
k=1

bk · Ô2(n− k)

)

= 0, ∀n < max(Na, Nb), where n ≤ N
(10)In the case of continuous monitoring, the achieved residual

signal denoted by r(n) is compared to a threshold (fixed or
dynamic) to detect a change in the system behavior. When an
LDM monitors the system at its vicinity intermittently with

a noisy measurement, another detection algorithm should be
used as the sensor noise, which can be modeled as a Gaussian
noise. Then, the effect of the noise in r(n) is reduced, and
it receives the same information by taking the expectation
of r(n) generation, r′(n) = E(r(n)). We consider that the
ensemble average of the residual signal for N samples can be
estimated by its time average:

R ≈ 1

N
·

N∑

n=max(Na,Nb)

⎛

⎜⎜⎝O2(n)−

⎛

⎜⎜⎝

Na∑
k=0

ak ·O1(n− k)

−
Na∑
k=1

bk ·O2(n− k)

⎞

⎟⎟⎠

⎞

⎟⎟⎠

(11)
where R is the residual number analogous to r.

To provide a perfect structural model embedded in a sensor
with low or no measurement noise, damage in the system
would be detected if R is non-zero. However, in a real
deployment, some modeling errors and other perturbations
may occur, which may yield a non-zero R for the undamaged
system. Therefore, R is compared to a threshold (h).

h = f(amplitude(O1)) = f

((
N∑

n=1

|O1(n)

)
/N

)
(12)

The analytical expression of h depends on the modeling
errors allowed by system operator through the BS. A simple
expression would be a linear threshold and the function f()
becomes a scaling coefficient that is given as follows:

h = α ·
((

N∑

n=1

|O1(n)|
)
/N

)
= h(α) (13)

Hence, the local decision making is follows:
if |R| > h, there is a ‘damage event’ in a structure,
otherwise, the structure is ‘safe’.

This delivers a local decision as a binary signal: ‘0’ for an
undamaged structure, and ‘1’ for a damaged structure. The
damage sensitivity (extent) is estimated by R/h subject to α.

B. Complexity Analysis
We analyze its computational complexity and benefits over

existing SHM algorithms. In accordance with (13) that rep-
resents R, for N measured samples, and using Na and Nb

coefficients for the transfer function, the embedded algorithm
requires the following number of elementary computations:

(N −max(Na, Nb)) · (2 +Na +Nb) addition
(N −max(Na, Nb)) · (Na +Nb) multiplication

(14)

To compute h, the algorithm requires:
(N −max(Na, Nb)) addition
(N −max(Na, Nb)) multiplication

(15)

Now, as N ≪ max(Na, Nb), the total number of com-
putational operations is of the order of N · (Na + Nb).
The order of complexity of this algorithm is O(N). The
computation cost of commonly used SHM algorithms, such
as NExT/ERA, is O(sm · eNExT + eERA(sm)). But eNExT

and eERA(sm) are non-linear functions of sm and the ERA
involves complex matrix computations including SVD (single
values decomposition) and matrix inversion. The minimum
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computation time can be given as 0.4×s2m+1.2× (sm)−3.6
in the WSN of Imote2 sensors. FFT-based approaches, e.g.,
DLAC [15] require 2N log2N multiplications and 2N log2N
additions. These highlight that MODEM significantly reduces
the computational cost using Intel Imote2 wireless sensors.

VII. SUBSTRUCTURE-ORIENTED GROUP-WISE DECISION

In this section, we first propose a substructure-oriented sen-
sor organization (SOSO) algorithm. Then, we provide sensor
interaction and the DDM election. Finally, we discuss decision
fusion for event detection in substructures.

A. Substructure-Oriented Sensor Organization (SOSO)
Physical substructures are normally identified by wired sen-

sors in civil engineering for substructure oriented monitoring,
but it is quite impossible by wireless sensors [19]. Thus, we
ignore the structure identification, but we utilize the idea of
substructural monitoring. Our focus is to provide substructure-
oriented monitoring rather than concentrating on a whole
structure, in which length or diameter can be from X00m to
Xkm (X=1,2,3..).

To achieve this, we follow an existing WSN-based SHM
specific clustering technique [17]. It nicely discusses the struc-
tural modal analysis (including mode shape) using clusters.
However, it has significant drawbacks, making it difficult to
substructure-oriented event monitoring as it did not handle
engineering-driven WSN deployment method [19]. We con-
sider the nature of structures, where a substructure can be a
part of industrial machinery areas, the area of a number of
floors of a building, a long-span of a bridge, one or more
sections of an aircraft, and the like [21]. It can be fixed based
on the scale of a structure and part or section orientations.
In this case, Rmin is important, which we first adjust to the
link quality and then to the diameter of a substructure (see
Fig. 3c). We need to organize sensor groups, where at least a
group of sensors is required to completely cover the area of a
substructure, and sensors in each group are strongly connected.
Using the WSN deployment method and the clustering, there is
possible that every section of a structure is not covered. Thus,
the grouping must therefore meet the following constraints:

• An LDM in a group gi belongs to the same substructure,
and is connected to a DDM.

• An LDM in gi is within a single hop to multi-hop of a
DDM, where it is able to adjust its communication range.

• All of the groups in the network are connected together
through the overlapping sensors.

Although satisfying the first constraint is straightforward, it
requires domain knowledge from both computer science and
CSMA engineering. Before formulating the above grouping
problem, we assume that a WSN has already been partitioned
according to the substructures they belong to. We therefore
only focus on how to further group the sensors in each
substructure to satisfy the second and third requirements,
and minimize the number of groups. Thus, the problem
becomes: given a WSN W = (V,E), find a grouping scheme
that can group these V sensors into K groups, denoted as
G = {g1, g2, g3, . . . , gK}, subject to the following constraints:

i) (∪gi∈G, where su ∈ gi) = V

ii) Let the subgraph for group gi be W (gi, Ei), where Ei ∈
E. Then, ∀gi ∈ G, ∃su ∈ gi, such that there is an edge
euv ∈ Ei between a sensor su and other sv ∈ gi(su ̸=sv)

iii) ∀gi, ∃gj ∈ G, (i ̸= j), gi ∩ gj ̸= ∅ and ∀G′ ⊆
G, (∪gi∈G′ gi) ∩ (∪gj∈G−G′ gj) ̸= ∅

Objective: Minimize cost(gi)
The 1st constraint is necessary since we wish to find

Dj obtained by all sensors. The 2nd constraint is to ensure
that groups are generated. The 3rd constraint describes that
generated groups are overlapped and connected. The detailed
justification/proof of the constraints are the same as in [19].

B. Sensor Interactions and the DDM Election
At the initialization, i.e., at the first Td, each LDM broad-

casts a packet in which it announces itself as the DDM,
unless it hears such an announcement from another LDM. An
important fact is that each LDM uses a table of records for the
group. For each LDM in the WSN, a record contains the LDM
id, a flag hinting whether it is a DDM or not, its current energy
level (ecur), and location. When an LDM becomes a DDM, it
has extra information in the table, e.g., about neighbor DDM.

At the end of each Td, each LDM transmits a report to the
DDM. The report includes id, decision, and ecur. Before going
to sleep, LDMs wait for an announcement about who is the
DDM in the next Td. After DDM fuses decisions transmitted
by the LDMs, DDM confirms the event and announces the
next DDM. The packet includes the confirmation on an event
detection and the next DDM id. When LDMs receive the
announcement, they update the records by id of the DDM
for the next Td. They mark the information so that when they
wake up in the next Td, they know which LDM is their DDM.

Under SOSO, group organization is performed once, but a
new DDM election is simply performed at the end of each Td.
A sensor node (say an LDM) may enter or leave a group, such
as group G1 over time due to being a boundary sensor, or due
to faults in the WSNs, or due to another reason. However, the
group G1 remains in MODEM until a sensor is alive. Thus, the
number of LDMs in a particular group of the WSN may vary,
but the number of groups in the WSN still remain the same
until further group organization or system run. LDMs wake
up, connect to the DDMs, and start sensing directly. Thus, this
group organization and DDMs election reduces maintenance
overhead and offers substructural monitoring.

Remarks. When following optimal clustering like [17], an
issue arises: there is a possibility that two or more groups cover
a substructure. To tackle this, we take each of the groups as a
sub-group and merge all sub-groups (that are covering a part of
the substructure) into a single large group, making it suitable
for covering the whole substructure.

C. Decision Fusion for Substructure-oriented Monitoring
The decisions made by LDMs of a group are fused at a

DDM to create a final decision so as to know whether or not
there is a damage event in a substructure. One of the simplest
fusion techniques is the use of the voting scheme presented in
other WSN applications [23]. Other methods, e.g., distance-
based or maximum posterior fusions, may also be used. In
MODEM, the local decision made by each LDM is Dj as (1).
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Consider that each DDM gets w decisions from its LDMs.
An event is confirmed by getting similar decisions from the
multiple LDMs. A DDM faces two cases in making a decision:

• If two or more LDMs report the same result (there may
have differences in non-binary result, as shown in Table
II), i.e., Dj=1. It is computed as follows:∑

Dj ≥ ⌊w/2⌋+ 1 (16)

Table II
BINARY AND NON-BINARY RESULTS (ACHIEVED FROM THE TESTBED)

Sensor ID Decision Difference (in Frequency)
id1 0 Null
id2 1 6.345, 5.346, 5.564,
id3 1 4.456, 5.345, 6.665
id4 0 Null
. . . . . . . . .

• If the DDM receives Dj=1 further from the same LDM,
DDM may request other LDMs to locate the event.
After making a decision, the DDM transmits the final
decision for its covering substructure to the BS in a
priority manner if Dj=1. The LDM waits for the DDM’s
announcement before entering into sleep mode.

VIII. PERFORMANCE EVALUATION

A. Simulation
1) Methodology: We validate the performance of MODEM

through a sophisticated building structure model (refer to Fig
3 and [12]). The real acceleration data traces collected by
a large number of sensors (800 sensors) deployed on the
GNTVT are used. The GNTVT was completed in 2011 and
became the tallest TV tower in the world, with a height (H)
of 450m of the main tower. A set of 200 sensors is used to
monitor the vibration at the transverse direction (z direction).
On average, the diameter of each substructure is d = H/q,
where q is the expected number of substructures, K ≥ q. The
communication range is adjusted with d, Rmin ≤ d ≤ Rmax.
Note that, for other substructures like aerospace vehicles,
industrial machines, K can be much more than q.

Simulations are done with the Matlab Toolbox using a FEM
of the GNTVT, adopted from [13] (we have attempted to
conduct simulations with the OMNeT++ tool, but have been
hindered by the fact that the FEM was not working well).
Given different levels of event (damage) injection at different
sensor locations (by modifying the input signal randomly in
the data sets of (1-5)th sensors, (18-22)th sensors, (41-45)th
sensors, (71-75)th sensors, and (95-99)th sensors). Note that it
is possible to change at any point on the data using the struc-
tural FEM. We model each sensor node with six discrete power
levels in the interval {-10dBm, 0dBm} regarding the Imote2’s
power settings that are tuned within the IEEE 802.15.4.

The objectives of the evaluation are to observe the perfor-
mance of (i) the AoED as the QoS and (ii) the energy cost
in MODEM. AoED is defined by the intensity of the damage
event detected by sensors compared to different percentages
of the damage event injection around sensor locations.

The performance of MODEM is compared to several
schemes. (i) Distributed ERA: The required computations
in the distributed ERA are updated incrementally [1]. It

Damage event detection in the 1st substructure, (sm =7)

Damage event detection in all substructures, (K =22, S =123)
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Figure 5. Event monitoring performance: (a) the AoED of the first group
of 7 sensors (LDMs) and detection fusion at the DDM; (b) the AoED of 22
groups of 123 sensors in the WSN.
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Figure 6. Event monitoring performance: the AoED of different groups of
sensors achieved and analyzed in different WSN-based SHM schemes.

requires fewer wireless transmissions compared to a cluster-
based ERA. (ii) Original ERA: The structural event detection
using ERA [1] is used based on the data collected by the wired
SHM system deployed on the GNTVT. (iii) SPEM: Sensors
transmit all the measured data toward the BS to make decisions
and compute mode shapes [13]. (iv) DLAC: Sensors use the
frequency domain analysis to compute the FFT of a discrete
sequence, and aggregate it locally so that they transmit a small
amount of data [15]. (v) Centralized MODEM: After making
a localized decision, the sensors transmit the decisions to the
BS for decision fusion, i.e., there is no DDM. But, if the
decision is “1”, they are required to transmit all of their data.

2) Simulation Results: Prior to the result processing, we
first design the model that links the strain signal and the
accelerated signal for the undamaged structure. Then, h is
estimated for the different levels of damage sensitivity and
decision making, as in (17). The model is determined as a
black box using the Matlab function ident. The black box
model uses the acceleration signal as an input O1 called u(t),
and the strain signal as an output O2 is called y(t) in Matlab.
Excluding the modeling error, the choice for the model used
is of the form given in (9). This is derived from the Matlab
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toolbox as follows:
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(17)

Fig. 5a depicts the AoED in MODEM, obtained by analyz-
ing the results from the 1st group of sensors. Fig. 5b shows
the AoED, obtained by groups of 123 sensors, which hints
that the damage event information is coming from sensors
(group-wise) in different substructures. We find K = 22 and
S = 123 with 25% overlap. Similar to the real system setup,
the parameter for residual is separated by R/h for α = 1.
Since these results are obtained by a damage situation (i.e.,
‘1’), we recover the exact damage information and estimate
R/h besides the ‘1’ decision. It is important to mention that
AoED from 40% to 50% in an SHM system can be enough
for attention in the form of an ’alert’. If it is more than 30%,
the situation demands attention. In MODEM, the maximum
AoED is about 63% provided by the 22nd group under 35%
damage injection in the structure. In a case of a small amount
of damage (5% to 10%), MODEM still offers a proper ‘alert’.

Fig. 6 shows the AoED achieved in different schemes. Look-
ing into the details, there are remarkable changes (events),
detected by the (5-9)th sensors and (18-22)th sensors, as
different levels of damage event information has been injected
at these sensor locations. We can observe that AoED ≥ 65%
is in original ERA-based detection, while AoED ≤ 53% in
distributed ERA, AoED ≤ 48% in DLAC, and AoED ≥ 59%
in centralized MODEM. AoED is around 63% in MODEM,
which is close to the original wired-based ERA scheme. It is
an evidence that MODEM is superior to other schemes.

Fig. 7 presents the average energy cost consumed by a
sensor in each round of monitoring, where Td = 5τ . This
cost is analyzed in the presence of the damage event. We can
see that MODEM outperforms other schemes: it achieves a
low energy cost, which is roughly at least three to six times
lower than other schemes in the presence of a ‘damage event’.
On an investigation, in the presence of a ‘no damage event,’
MODEM has at least eight times lower energy cost than that of
DLAC, and at least nine times less than that of the distributed
ERA, and so on. This is because the amount of computation
time and wireless transmission is drastically reduced, and the
frequency of transmission is small. All these are achieved by
sensor in-network decision-making in the CPS.

B. Experiments on the Physical Structure
1) Proof-of-concept System: We implement the MODEM

in TinyOS on SHM mote platforms. In our implementation,

(DDM)

Group 2

Group 1

(c) Grouping
      results

(DDM)

(a) Test building structure (b) Mote deployment

Figure 8. (a) Twelve-story test building structure and the placement of 10
SHM motes on it; (b) sensor grouping; (c) DDM selection.

 s1 s2 s3 s4 s5 s6 s7 s8 s9 

18.332 21.233 27.231 21.323 18.212 16.122 19.132 6.434 15.343 

19.212 18.131 26.121 22.121 19.124 17.465 20.466 17.566 16.65 

SensorExp.
Experiment 1

Experiment 2

Table III
 Identified frequency (Hz) in the undamaged structural system

a multi-metric and specialized SHM mote with on-board
signal processing and embedded decision making specifically
planned for general SHM applications is designed. Each SHM
mote is integrated with three main hardware components: a
sensor board, an Intel Imote2, and a radio-triggered wakeup
with a synchronization module [19]. For an undamaged struc-
ture, each mote keeps 20 to 22 bytes of data, but removes
other data after each Td.

The SHM motes run modified TinyOS, and are configured
to sample the accelerometers in a synchronized manner at a
frequency of 560Hz. We modify the radio-related components
in TinyOS 2.0 for time-stamping the packet close to the
transmitter. When a mote receives an ACK that the data packet
is received by an upper stream mote (i.e., DDM), then data
is removed from the buffer, except for the last set of data
that remains in the buffer. The Imote2’s 3D accelerometer has
a resolution of 12-bit, or equivalent 0.97 mg with 3-axis of
measurement and ±2g of amplitude [16].

We design a twelve-story shear frame structure to verify
MODEM under physical damage injection. The structure is
shared into two substructures, with each having at least four
floors. 10 SHM motes are deployed, according to the 3D
location identification on the structure, and are organized into
two groups by using the SOSO algorithm.

2) Experimental Results: Study of the AoED. We observe
the sensors’ identified frequencies in Table III under excitation
by using a magnetic shaker and an undamaged structure,
obtained by the last set of frequencies remaining in memory.
According to different damaged conditions, as shown in Fig.
9a, we summarize the frequency differences in Fig. 9b. We
found that the frequencies vary largely as the damage is
injected. We consider three damage injection cases: the plates
are removed from the first, fifth, and ninth floor, respectively.

r and h are parameters that are required to be passed
to the motes at the beginning for accurate decision-making.
With reference to (12), we use r as an adaptive threshold for
flexibility. The damage sensitivity at different sensors is shown
in Fig. 9b, where R/h indicates the sensitivity of the damage,
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Figure 10. Performance on the event of damage detection.

which is about 0.1 × 10−4 to 0.9 × 10−4. r is separated by
h for α = 1. This can justify the form of the threshold used.
The AoED of the mote placed on the 2nd floor is depicted in
Fig. 9c. We can see that the AoED increases as R/h increases,
i.e., the AoED is higher (e.g., > 60%) as R/h is higher.

In the next set of experiments, we analyze some interesting
results. We add some noise into the measurements so that the
identified frequency difference through r is closer to (even
better than) a real structure. We then estimate the AoED that
is due to α, R, and h. In MODEM, the motes in the first
sensor group are able to provide detection up to getting an
alert in an SHM system, as shown in Fig. 10. This illustrates
sensors’ AoED up to 60%. We think that having AoED of
more than 50% can be enough in SHM to alert the system
user in a ‘event’ situation.

Study of the Energy Cost. The PXA271 fully calculates
residual r and decides on Dj via r. The energy consumed by
the PXA271 is estimated by the decision-making cost. Fig. 11
exhibits the average energy cost for five rounds of monitoring
in the presence of an event, and compares the results with
the existing schemes. When estimating the energy cost, we
include sensor measurement, computation, and transmission.
We calculate the energy cost, cost(su), in Td by summing
the energy consumed in all rounds in Td. By analyzing and
comparing with the others in Fig. 11, MODEM saves at least
three times the energy (which is more than eight times that
under ‘no event’), when compared to its counterparts. Also,
the centralized MODEM outperforms others, and minimizes
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Figure 11. The average energy cost of a Imote2 for five rounds of structural
event monitoring under the presence of the damage event.

energy cost from 0.231 mAh to 0.137 mAh. This minimization
is mainly achieved by the in-network decision-making that
results in a very minimum amount of data transmissions.
Since the transmission cost in WSNs is a dominating factor,
such reduction in the wireless transmission cost enhances
the applicability of WSNs for SHM. (more details about the
experimental study can be found in Appendices E and F)

IX. CONCLUSION
To enhance the applicability of resource-constrained WSNs

for SHM and to offer more choices for engineering commu-
nities in order to the vitality of structures and public safety
requirements, we have devised a computationally inexpensive
and cost-efficient CPS design. We proposed MODEM, a
comprehensive model-based decision-making scheme for the
CPS, which to our knowledge is the first of its kind, featuring
a fully-distributed monitoring. Evaluation results achieved via
simulations and a prototype SHM system validated MODEM’s
performance and capacity to make high-quality decisions and
improve the applicability of WSNs for SHM by significantly
reducing the energy cost.

Our future work includes the following: i) designing
application-specific data fusion models; ii) developing SHM-
specific sensor scheduling techniques that will wake up sensors
in a particular substructure.
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